Determinant: $det(A)$
$det(A^T) = det(A)$
Transpose: $A^T$
Minor: A minor-matrix $M_{ij}$ is a determinant of sub-matrix after deleting $row_i$ and $column_j$
Cofactor: $cofactor(A) = (-1)^{i+j}\times M_{ij}$
Adjoint: $adj(A) = cofactor(A)^T$
Inverse:
$$ A^{-1} = \frac{adj(A)}{det(A)} $$
$$ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} $$
Given $f(x)$ is a contiguous graph, calculate $f''(x)$ and analyze the solutions.
$$ S=\Delta x \times \sum_{i=1}^{n}f(x^*_i) $$